China supplier 64mm High Precision Round Flange Mounted Motor Planetary Gearbox (PG64-P1-L2) cycloidal gearbox

Product Description

64mm High Precision Round Flange Mounted Motor Planetary Gearbox (PG64-P1-L2)

Planetary reducer is widely used, mainly in the field of textile machinery, spring machine, printing equipment, etc
There are also many brands of servo motors, mainly including Panasonnic,Fuji,Mitsubishi, etc

Product Description

Nickel chromium molybdenum alloy steel gear is manufactured with carburizing heat treatment for high abrasion resistance and impact toughness and by honing process to increase gear precision and low noise operation.Internal gear bore uses needle roller to obtain higher abrasion resistance and strength.

1.Specail flange joint output, can satisfy with the biggest installation.

2.shorter size, low installation space.

3.Low return backlash,precision location.

4.Double bracing cage planetary shelf structure.high reliable. Can suit reversible rotation frequently.

5.With axial clearance adjustment function.
6.The rotating frame bearing can be switched. After being changed into angular contact bearing, the bearing capacity of axial force and radial force will be greatly reduced.
7.Impact resistance, can adapt to high acceleration and deceleration conditions.

Product Parameters

Specifications PG64 PG90 PG110
Technal Parameters
Max. Torque Nm 3times rated torque
Emergency Stop Torque Nm 3times rated torque
Max. Radial Load N 2050 4100 8200
Max. Axial Load N 513 1571 2050
Torsional Rigidity Nm/arcmin 13 31 82
Max.Input Speed rpm 6000 6000 4500-6000
Rated Input Speed rpm 4000 3000 3000
Noise dB ≤58 ≤60 ≤65
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤3 ≤3 ≤3
L2 arcmin ≤5 ≤5 ≤5
P2 L1 arcmin ≤5 ≤5 ≤5
L2 arcmin ≤8 ≤8 ≤8
Moment Of Inertia Table L1 4 Kg*cm2 0.13 0.51 2.87
5 Kg*cm2 0.13 0.47 2.71
7 Kg*cm2 0.13 0.45 2.62
10 Kg*cm2 0.03 0.44 2.57
L2 16 Kg*cm2 0.03 0.23 0.47
20 Kg*cm2 0.03 0.23 0.47
25 Kg*cm2 0.03 0.23 0.47
28 Kg*cm2 0.03 0.23 0.47
35 Kg*cm2 0.03 0.23 0.47
40 Kg*cm2 0.03 0.23 0.47
50 Kg*cm2 0.03 0.2 0.44
70 Kg*cm2 0.03 0.2 0.44
100 Kg*cm2 0.03 0.2 0.44
Technical Parameter Level Ratio   PXR42 PXR60 PXR90
Rated Torque L1 4 Nm 40 120 220
5 Nm 40 125 260
7 Nm 40 125 260
10 Nm 35 80 160
L2 16 Nm 50 120 300
20 Nm 50 120 300
25 Nm 50 125 350
28 Nm 50 120 300
35 Nm 50 125 350
40 Nm 50 125 350
50 Nm 50 125 350
70 Nm 50 125 350
100 Nm 35 80 220
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 1.3 3.4 7.1
L2 kg 1.9 4.7 9.5

 

Company Profile

 

Packaging & Shipping

1. Lead time: 10-15 days as usual, 30 days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ TNT/ EMS/ FEDEX

 

Application: Motor, Motorcycle, Machinery, Marine, Agricultural Machinery, Packaging Machinery
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Samples:
US$ 298/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Design Principles and Functions of Planetary Gearboxes

Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:

  • Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
  • Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
  • Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
  • Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
  • Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
  • Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
  • Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
  • Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
  • Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.

Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.

China supplier 64mm High Precision Round Flange Mounted Motor Planetary Gearbox (PG64-P1-L2)   cycloidal gearbox	China supplier 64mm High Precision Round Flange Mounted Motor Planetary Gearbox (PG64-P1-L2)   cycloidal gearbox
editor by CX 2023-11-27